40KPA Pressure Sensor

Features

- Ranges: -100~0kPa...1000kPa(-15~0PSI...150PSI)
- MEMS Technology
- Gauge
- SMD package(SOP6)
- For non-corrosive gas or liquid
- Working temp.: $-40^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} \sim+257^{\circ} \mathrm{F}\right)$
- Pressurize from back side of the chip
- Easy to use and embed in OEM equipment

Applications

- For Medical field, such as digital blooding pressure meter,breathing machine,oxygen generating equipment,monitor etc, medical instruments and device.
- For Automotive electronics field, such as tire pressure gauge, MAP sensor etc.
- For Other fields, such as environment monitoring,liquid level measurement,sport and fitness equipment,air bed,meteorology,other pneumatic device etc.

Introduction

XGZP is a piezoresistive pressure sensor for application in many fields such as medical, consumer electronics etc. The core is a silicon piezoresistive pressure sensing die that is designed and fabricated by MEMS technology. The pressure sensing die is composed of a springy diaphragm and four resistors integrated in the diaphragm. Four piezo-resistors build up a Wheatstone bridge structure. When the springy diaphragm is pressured, Wheatstone bridge produces a linear proportional voltage signal (mV) that is proportional to input pressure.

With standard SOP6 package, XGZP is easy for users to install by surface mounting.
With good repeatability, linearity, stability and sensibility, XGZP is very facile for users to calibrate output, thermal drift and make temperature compensation by using exterior operational amplifier or integrated circuit.

The pressure medium other than dry air or non-corrosive gas can't be used directly. It is highly prohibited to choke the side of pressure diaphragm during actual application.

Electronic Performance

- Power supply: $\leq 10 \mathrm{VDC}$ or $\leq 2.0 \mathrm{mADC}$
- Input impedance: $4 \mathrm{k} \Omega \sim 6 \mathrm{k} \Omega$
- Output impedance: $4 \mathrm{k} \Omega \sim 6 \mathrm{k} \Omega$
- Insulation resistor: $100 \mathrm{M} \Omega, 100 \mathrm{VDC}$
- Overpressure:
$0 \sim 20 \mathrm{kPa} . .200 \mathrm{kPa}(0 \sim 2.9 \mathrm{PSI} \ldots 30 \mathrm{PSI}):$ 2X Rated Pressure
$0 \sim 500 \mathrm{kPa} . . .1000 \mathrm{kPa}(0 \sim 75 \mathrm{PSI} . .150 \mathrm{PSI}): 1.5 \mathrm{X}$ Rated Pressure

Construction

- Sensing die: silicon
\checkmark Die mounting glue:silicone glue $\leq 200 \mathrm{kPa} / 30 \mathrm{PSI})$ or Epoxy Glue $(>200 \mathrm{kPa} / 30 \mathrm{PSI}$)
- Leading wire: gold wire
- Packing housing: PPS
- Pin: silver plated copper
- Net weight: around 1g

Environment Condition

- Orientation: deviate 90° from any direction, zero change $\leq 0.05 \% \mathrm{FS}$
- Shock: no change at $10 \mathrm{gRMS},(20 \sim 2000) \mathrm{Hz}$ condition
- Impact: $100 \mathrm{~g}, 11 \mathrm{~ms}$
- Medium compatibility:

Pressure side: liquid or gas compatible with silicone, silicone glue, epoxy glue or PPS
Reference side: non-conductive, non-corrosive liquid or gas compatible with PPS, silicon and silicone glue or epoxy, gold, aluminum and silver.

Basic Condition

- Medium: Gas(Clean,dry air and Non-corrosive gases)
- Medium temp: $(25 \pm 1)^{\circ} \mathrm{C} /(77 \pm 1.8)^{\circ} \mathrm{F}$
- Environment temp.: $(25 \pm 1)^{\circ} \mathrm{C} /(77 \pm 1.8)^{\circ} \mathrm{F}$
- Shock: 0.1g (1m/s2) Max
- Humidity: $(50 \% \pm 10 \%) \mathrm{RH}$
- Power supply: (5 ± 0.005) VDC

Specifications

Specifications		Min.	Typ.	Max	Unit
Range		-100,7,20,40,100,200,500,700,1000			kPa
Range		-15,1,2.9,5.8,15,30,105,150			PSI
Range		-760,53,150,300,760,1500,3750,5250			mmHg
Working Temp.		-40/-40		+125/257	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
Storage Temp.		-40/-40		+150/302	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$
Bridge Resistance		4	5	6	k Ω
Zero Output		-15		+15	mV
FS Output	$20 \mathrm{kPa} / 2.9 \mathrm{PSI}$	40	55	70	mV
	$40 \mathrm{kPa} / 5.8 \mathrm{PSI}$	50	75	100	mV
	$\geq 100 \mathrm{kPa} / \geq 15 \mathrm{PSI}$	70	100	130	mV
Bridge Resistance Temp. Coefficient		2400	2800	3200	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Zero Temp. Coefficient		-0.3 /-0.03		0.3 / $/ 0.03^{\text {® }}$	\%FS/ ${ }^{\circ} \mathrm{C}$
FS Temp. Coefficient		$-0.19{ }^{\oplus} /-0.06{ }^{\ominus}$	$-0.22{ }^{\text {® }}$	$-0.25^{\oplus} / 0.06^{\otimes}$	\%FS/ ${ }^{\circ} \mathrm{C}$
Non-linearity			0.2	0.3	\%FS
Hysteresis			± 0.1		\%FS
Repeatability			± 0.1		\%FS
Annual Drift			± 1.0		\%FS

Note: Testing at basic condition.\&Temp. range for Thermal drift: $0^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C} .\left(32^{\circ} \mathrm{F} \sim 176^{\circ} \mathrm{F}\right)$
(1) Excitated by constant voltage (2)Excitated by constant current

Dimension (Unit:mm/Inch)

Equivalent Circuit Diagram

Pin	1	2	3	4	5	6
Definition B1	Vo-	Vs^{+}	Vo^{+}	N / C	GND	$\mathrm{Vo}-$
Definition B2	GND	$\mathrm{Vo}+$	Vs^{+}	N / C	$\mathrm{Vo}-$	GND
Definition B3	GND	$\mathrm{Vo}-$	$\mathrm{Vs}+$	N / C	$\mathrm{Vo}+$	GND

Symbol	Vs +	GND	Vo +	Vo-
Definition	Power +	Power -	Output +	Output -

B1 as default PIN Definition unless otherwise specified.

Order Guide

